
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Code Generation

© 2023 Arthur Hoskey. All
rights reserved.

Running Code

 A computer's CPU runs all code.

 Each CPU has its own specific instruction set that it knows
how to run.

 A program in some source language must be converted
into a form that can be executed by a specific computer.

 Here are some compiler output types:
◦ Machine code for a specific CPU

◦ Assembly language code

◦ Java bytecode

 For example, the Java Virtual Machine (JVM) converts Java
bytecode into machine code (Java Bytecode → Machine
Code).

© 2023 Arthur Hoskey. All
rights reserved.

Code Generation

 Code will be generated from an abstract syntax tree.

 We will be generating pseudo-assembly code.

© 2023 Arthur Hoskey. All
rights reserved.

Assembly Code

=

x +

y z

Abstract Syntax Tree

(Intermediate Representation

var x

var y

var z

load r1, y

load r2, z

add r1, r2, r3

store r3, x

The AST is converted to assembly

language code

Code Generation

 Code will be generated by traversing the abstract syntax
tree.

 Use a depth first traversal to generate code (a breadth first
traversal would not work).

© 2023 Arthur Hoskey. All
rights reserved.

Generating Java Code from an AST

 We will first look at generating Java code from an
abstract syntax tree…

© 2023 Arthur Hoskey. All
rights reserved.

Code Generation - Expressions

 Code generation for expression.

 What is the Java code?

© 2023 Arthur Hoskey. All
rights reserved.

+

y z

Code Generation - Expression

 Code generation for expression.

 What is the Java code?

 Java code

y + z

© 2023 Arthur Hoskey. All
rights reserved.

+

y z

Java – Assignment

 Code generation for assignment.

 What is the Java code?

© 2023 Arthur Hoskey. All
rights reserved.

=

x y

Java – Assignment

 Code generation for assignment.

 What is the Java code?

 Java code

x = y;

© 2023 Arthur Hoskey. All
rights reserved.

=

x y

A semicolon needs

to be added at the

end for Java.

Java – Assignment with
Expression

 Code generation for assignment with expression.

 What is the Java code?

© 2023 Arthur Hoskey. All
rights reserved.

=

x +

y z

Java – Assignment with
Expression

 Code generation for assignment.

 What is the Java code?

 Java code

x = y + z;

© 2023 Arthur Hoskey. All
rights reserved.

=

x +

y z

Java – Print

 Code generation for assignment.

 What is the Java code?

© 2023 Arthur Hoskey. All
rights reserved.

Print

x

Java – Print

 Code generation for assignment.

 What is the Java code?

 Java code

System.out.println(x);

© 2023 Arthur Hoskey. All
rights reserved.

Print

x

Java uses

System.out.println to

print to the console

Java – Declarations

 Code generation for declarations.

 What is the Java code? Assume that only the int data type
allowed.

© 2023 Arthur Hoskey. All
rights reserved.

Declarations

x y z

Java – Declarations

 Code generation for declarations.

 What is the Java code? Assume only int data type allowed.

 Java code

int x;

int y;

int z;

 What would be another way to do this in Java?

© 2023 Arthur Hoskey. All
rights reserved.

Declarations

x y z

Used three separate

statements for the

declarations

Java – Declarations

 Code generation for declarations.

 What is the Java code? Assume only int data type allowed.

 Java code

int x;

int y;

int z;

 What would be another way to do this in Java?

int x, y, z;

© 2023 Arthur Hoskey. All
rights reserved.

Declarations

x y z

Used three separate

statements for the

declarations

All three declared on

same line

Java – Statement Block

 Code generation for statement block.

 What is the Java code? What is Java syntax for a block?

© 2023 Arthur Hoskey. All
rights reserved.

Statement Block

Print

x

Print

y

Java – Statement Block

 Code generation for statement block.

 What is the Java code? What is Java syntax for a block?

 Java code

{

 System.out.println(x);

 System.out.println(y);

}

© 2023 Arthur Hoskey. All
rights reserved.

Statement Block

Print

x

Print

y

Curly braces were

added before and after

the statements

Java – If

 Code generation for if. Use equality test on a and b.

 What is the Java code?

© 2023 Arthur Hoskey. All
rights reserved.

Statement Block

Print

x

Print

y

a b

If

Java – If

 Code generation for if. Use equality test on a and b.

 What is the Java code?

 Java code

if (a == b)

{

 System.out.println(x);

 System.out.println(y);

}

© 2023 Arthur Hoskey. All
rights reserved.

Statement Block

Print

x

Print

y

a b

If

The if test is followed

by the statement blockStart statement

block

End statement

block

If test

Generating Assembler Code from
an AST

 Now we will look at generating assembler code from an
abstract syntax tree…

© 2023 Arthur Hoskey. All
rights reserved.

Assembler vs Java

 Generating assembler code is harder than Java (or any
other high-level language).

 In general, multiple assembler instructions are required to
do what one high-level instruction does.

 The following line of Java code assigns the value y to x:

x = y;

 The following code does the same in assembler:

load r1, y

store r1, x

 Two assembler instructions are required to do the
assignment.

© 2023 Arthur Hoskey. All
rights reserved.

The y variable must first be loaded into a

register before it can be copied into x

Put the value into x from register r1

Assembler vs Java

 Here is an example of doing an addition then assigning the
result to another variable.

 Java code:

x = y + z;

 The following code does the same in assembler:

load r1, y

load r2, z

add r1, r2, r3

store r3, x

© 2023 Arthur Hoskey. All
rights reserved.

Load the y and z variables into registers in

preparation for running an add instruction

Add r1 (contains y) and r2 (contains z) and put result of add in r3

Put the result of the add into variable x

Assembler - Expression

 Code generation for expression.

 What is the assembler code?

© 2023 Arthur Hoskey. All
rights reserved.

+

y z

Assembler - Expression

 Code generation for expression.

 What is the assembler code?

 Assembler code

load r1, y

load r2, z

add r1, r2, r3

© 2023 Arthur Hoskey. All
rights reserved.

+

y z

The result of the addition is

being store in register r3

There needs to be a way to choose which register

the add will write the result to. If r3 were being used

by another part of the program, using it here would

create an error. This problem is related to the subject

of register allocation.

r1 r2

r3

Register Allocation

 Register Allocation – How do we assign variables and
temporary values to registers.

 A CPU has a finite number of registers so we cannot give
every variable and every temporary value exclusive use of
a register.

 We need to keep track of which registers are currently used
and unused.

 Values for subexpressions should be stored in a register (if
possible).

 If all registers are in use, we can store a value in a variable
instead (this is called "spilling" the registers).

© 2023 Arthur Hoskey. All
rights reserved.

Assembler – Assignment

 Code generation for assignment.

 What is the assembler code? Which registers are used?

© 2023 Arthur Hoskey. All
rights reserved.

=

x y

Assembler – Assignment

 Code generation for assignment.

 What is the assembler code? Which registers are used?

 Assembler code

load r1, y

store r1, x

© 2023 Arthur Hoskey. All
rights reserved.

=

x y

Y needs to be loaded into a

register first then it can be

stored into x from there

r1

Assembler – Assignment with
Expression

 Code generation for assignment.

 What is the assembler code? Which registers are used?

© 2023 Arthur Hoskey. All
rights reserved.

=

x +

y z

Assembler – Assignment with
Expression

 Code generation for assignment.

 What is the assembler code? Which registers are used?

 Assembler code

load r1, y

load r2, z

add r1, r2, r3

store r3, x

© 2023 Arthur Hoskey. All
rights reserved.

=

x +

y z

r1 r2

r3

Assembler – Print

 Code generation for assignment.

 What is the assembler code? Which registers are used?

© 2023 Arthur Hoskey. All
rights reserved.

Print

x

Assembler – Print

 Code generation for assignment.

 What is the assembler code? Which registers are used?

 Assembler code

load r1, x

print r1

Note: Actual assembler code for a print method will require
more code for a method call. We are using a very simplified
assembly language.

© 2023 Arthur Hoskey. All
rights reserved.

Print

x r1

Assembler – If

 Code generation for if. a and b are used in the test.

 What is the assembler code? Which registers are used?

 Assembler code
load r1, a

load r2, b

branchNotEqual r1, r2, labelEndIf

load r3, x

print r3

load r4, y

print r4

: labelEndIf

© 2023 Arthur Hoskey. All
rights reserved.

Statement Block

Print

x

Print

y

a b

If

Branch not equal is being used

(instead of branch equal) because

it should skip the statements if

the values in the test are not

equal. If r1 and r2 are not equal, it

jumps to labelEndIf.

r1 r2

r3 r4

Code Generation During Traversal

 Code generation during traversal…

© 2023 Arthur Hoskey. All
rights reserved.

Depth First Traversals of AST

 What are the preorder, inorder, and postorder traversals of
the following AST?

© 2023 Arthur Hoskey. All
rights reserved.

+

y z

Depth First Traversals of AST

 What are the preorder, inorder, and postorder traversals of
the following AST?

 Preorder: + y z

 Inorder: y + z

 Postorder: y z +

© 2023 Arthur Hoskey. All
rights reserved.

+

y z

Which is best to use when

traversing to generate code?

Depth First Traversals of AST

 What are the preorder, inorder, and postorder traversals of
the following AST?

 Preorder: + y z

 Inorder: y + z

 Postorder: y z +

 In general, we need to get the operands first before
we can generate code for an operator.

 In the above example, we need to get the y and z
values for the add operation.

© 2023 Arthur Hoskey. All
rights reserved.

+

y z

Which is best to use when

traversing to generate code?

ANSWER: POSTORDER

Code Generation During Traversal

 Use a postorder traversal to generate code.

 1 – Visit node y. This will generate code to put y in a register.

load r1, y

 2 – Visit node z. This will generate code to put z in a register.

load r2, z

 3 – Visit node +. This will generate code to add y (in r1) and z (in
r2). The result will be put in an open register (r3).

add r1, r2, r3

© 2023 Arthur Hoskey. All
rights reserved.

+

y z1 2

3

r1 r2

r3

Assembler – Assignment with
Expression

 What is the postorder traversal?

© 2023 Arthur Hoskey. All
rights reserved.

=

x +

y z

Assembler – Assignment with
Expression

 What is the postorder traversal?

 Postorder: x y z + =

© 2023 Arthur Hoskey. All
rights reserved.

=

x +

y z

What code will be generated for

node x?

Assembler – Assignment with
Expression

 What is the postorder traversal?

 Postorder: x y z + =

© 2023 Arthur Hoskey. All
rights reserved.

=

x +

y z

What code will be generated for node

x?

ANSWER: NOTHING. THE

ASSIGNMENT (=) DOES NOT HAVE TO

CALL A METHOD TO VISIT THAT

NODE. IT CAN JUST GET THE

VARIABLE NAME FROM NODE X. IT

WILL STORE THE RESULT IN THIS

VARIABLE NAME WHEN GENERATING

CODE FOR THE = NODE.

Assembler – Assignment with
Expression

 Describe what happens in a postorder traversal to generate
code for this AST. What code is generated at each step?

© 2023 Arthur Hoskey. All
rights reserved.

=

x +

y z

Assembler – Assignment with
Expression

 Describe what happens in a postorder traversal to generate
code for this AST. What code is generated at each step?

 1 – No need to visit for assignment.

 2 - Visit node y. This will generate code to put y in a register.

load r1, y

 3 - Visit node z. This will generate code to put z in a register.

load r2, z

 4 - Visit node +. Generate code to add y (in r1) and z (in r2). Put result in r3.

add r1, r2, r3

 5 – Visit node =. Generate code to store int x from r3.

store r3, x

© 2023 Arthur Hoskey. All
rights reserved.

=

x +

y z
r1 r2

r31

2 3

4

5

Assembler – If

 Describe what happens in a traversal to generate code for this
AST. Note: This will NOT be a strict postorder traversal.

© 2023 Arthur Hoskey. All
rights reserved.

Statement Block

Print

x

Print

y

If

a b

Assembler – If

 Describe what happens in a traversal to generate code for this
AST. Note: This will not be a strict postorder traversal.

 Assembler code
load r1, a

load r2, b

branchNotEqual r1, r2, labelEndIf

load r3, x

print r3

load r4, y

print r4

: labelEndIf

© 2023 Arthur Hoskey. All
rights reserved.

Statement Block

Print

x

Print

y

a b

If

r1 r2

r3 r4

1 2

After visiting nodes a and b it writes the

branchNotEqual statement. It will then visit

the statement block.

Branch not equal is being used (instead of

branch equal) because it should skip the

statements if not equal (jumps to labelEndIf).

Statement

Block Code

3

5

6

4

7

8

9

10

Write label after processing statement block

Note: Steps 4 and 9 do not do anything here.

If a language needed code for the start and

end of the block it would do it in these steps.

If – Strictly Postorder Traversal

 We could perform a strictly postorder traversal if we wanted.

 Basically, the if node should gather all information before
generating any code.

 Nodes a and be should return the registers they are stored in.

 The statement block should gather all code in its block and return
the whole code block to the if node.

 The if node would then generate all its code from the gathered
information from nodes a, b, and statement block.

© 2023 Arthur Hoskey. All
rights reserved.

Statement Block

Print

x

Print

y

a b

If

r1 r2

r3 r4

1 2

8

3

4

7

5

6

Strictly Postorder Traversal

Pseudocode for Code Generation

 Pseudocode for code generation…

© 2023 Arthur Hoskey. All
rights reserved.

Code Generation Flow

 Implement a code() method for every AST node.

 Calls to the code() method should do the following:
◦ Generate assembly code for the node. This code should be added to the end of a

List<String> that contains all the assembly code (each item is one line of code).

◦ Return a register id. This register id can then be used by the parent node to help
the parent node generate its code (can return "" for the register id if it does not
need one).

© 2023 Arthur Hoskey. All
rights reserved.

Left child call to code()

will generate a load

instruction and return

the register id

Sum

Expr Expr

Sum's code() will call code() on its left and right children.

It will use the register ids returned by each child call

when generating its code for the add instruction.

1 2

3

Right child call to code() will

generate a load instruction

and return the register id

Next Open Register Helper Method

 Some functions need an open register for the result of their
operations.

 We will use a trivial register allocation method to make things easier.

 Create a variable to hold the value of the next open register.

 Each time a register is needed, use that value and then increment it.

 A non-trivial algorithm would reuse the registers when their value is
no longer needed.

 Here is pseudocode (assumes nextRegInt has been declared in the
class and initialized):

NextOpenRegId() returns String

 Declare String regIdString

 Set regIdString to "r" + nextRegInt

 Set nextRetInt to nextRegInt + 1

 Return regIdString

© 2023 Arthur Hoskey. All
rights reserved.

Generates a register id

such as r1, r2, etc…

AST Node Id Code Generation

 The id class stores the variable's name.

 The value for this variable should be loaded into a register.

 If the Id node is on the left side of an assignment, then it will do an
unnecessary load. We could code the assignment node so that it does not call
code() on an Id if the Id node is the left side of an assignment statement.

class Id extends Expr {

 Declare String name

 Id Constructor (String name) {

 Set this.name to name

 }

 code() returns String {

 Declare String regId

 Set regId to NextOpenRegId()

 Declare String line

 Set line to "load " + regId + ", " + name

 Add line to end of assemblyCode

 Return regId

 }

}

© 2023 Arthur Hoskey. All
rights reserved.

Build a string for the load

instruction. The member

variable name has the

variable to store to.

Return the register that

is holding the value

assemblyCode is a variable

that holds the generated

code. Can make this a

List<String>. Each item is

one line of code.

AST Node Sum Code Generation

 Recursively calls code for left and right sides.

class Sum extends Expr {

 Declare Expr lhs

 Declare Expr rhs

 Sum Constructor(Expr lhs, Expr rhs) {

 Set this.lhs to lhs

 Set this.rhs to rhs

 }

 code() returns String {

 Declare String line, lhsRegId, rhsRegId, resultRegId

 Set lhsRegId to lhs.code()

 Set rhsRegId to rhs.code()

 Set resultRegId to NextOpenRegId()

 Set line to "add " + lhsRegId + ", " + rhsRegId + ", " + resultRegId

 Add line to end of assemblyCode

 Return resultRegId

 }

}

© 2023 Arthur Hoskey. All
rights reserved.

lhs and rhs are

children of Sum

The Sum class is

used for operator (+)

nodes in the AST

Sum

Expr Expr

Build a string for the add

instruction

Get registers returned

by child nodes

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Running Code
	Slide 4: Code Generation
	Slide 5: Code Generation
	Slide 6: Generating Java Code from an AST
	Slide 7: Code Generation - Expressions
	Slide 8: Code Generation - Expression
	Slide 9: Java – Assignment
	Slide 10: Java – Assignment
	Slide 11: Java – Assignment with Expression
	Slide 12: Java – Assignment with Expression
	Slide 13: Java – Print
	Slide 14: Java – Print
	Slide 15: Java – Declarations
	Slide 16: Java – Declarations
	Slide 17: Java – Declarations
	Slide 18: Java – Statement Block
	Slide 19: Java – Statement Block
	Slide 20: Java – If
	Slide 21: Java – If
	Slide 22: Generating Assembler Code from an AST
	Slide 23: Assembler vs Java
	Slide 24: Assembler vs Java
	Slide 25: Assembler - Expression
	Slide 26: Assembler - Expression
	Slide 27: Register Allocation
	Slide 28: Assembler – Assignment
	Slide 29: Assembler – Assignment
	Slide 30: Assembler – Assignment with Expression
	Slide 31: Assembler – Assignment with Expression
	Slide 32: Assembler – Print
	Slide 33: Assembler – Print
	Slide 34: Assembler – If
	Slide 35: Code Generation During Traversal
	Slide 36: Depth First Traversals of AST
	Slide 37: Depth First Traversals of AST
	Slide 38: Depth First Traversals of AST
	Slide 39: Code Generation During Traversal
	Slide 40: Assembler – Assignment with Expression
	Slide 41: Assembler – Assignment with Expression
	Slide 42: Assembler – Assignment with Expression
	Slide 43: Assembler – Assignment with Expression
	Slide 44: Assembler – Assignment with Expression
	Slide 45: Assembler – If
	Slide 46: Assembler – If
	Slide 47: If – Strictly Postorder Traversal
	Slide 48: Pseudocode for Code Generation
	Slide 49: Code Generation Flow
	Slide 50: Next Open Register Helper Method
	Slide 51: AST Node Id Code Generation
	Slide 52: AST Node Sum Code Generation
	Slide 53: End of Slides

